The Effect of Seaweed Extract Biostimulant on Growth and Yield of Eggplant (Solanum melongena L.)
DOI:
https://doi.org/10.55173/agriscience.v9i2.190Abstract
Eggplant possesses high economic value with various nutritional contents such as minerals and vitamins that are benefical for human health. However, productivity decline due to environmental stress poses a challenge in global market demand fulfillment. The application of biostimulants represents one solution to enhance the growth and yield of eggplant (Solanum melongena L.). This research aimed to examine the effect and optimal concentration of biostimulant application on eggplant plants. The study was conducted in cultivation fields located in Nanggela Village, Kuningan Regency, West Java, from July to October 2025. This experiment used Randomized Block Design (RBD) with nine biostimulant concentration treatments and three replications, resulting in 27 experimental plots, each measuring 3,5 x 1,5 meters, consisting 14 plants and a 50 cm spacing between plots, 50 cm spacing between plants, and 60 cm spacing between rows. The vegetative phase observation parameters included root length, root volume, plant height, stem diameter, number of leaves, leaf area, leaf area index, plant dry weight, and relative growth rate, while the generative phase parameters included number of fruits, fruit diameter, fruit length, fruit weight, and yield weight per plant. The data obtained were analyzed using one-way analysis of variance (ANOVA), followed by the Scott-Knott cluster analyses to determind significant differences among treatments. The results showed that biostimulants had a significant effect on growth and development aspects. Specifically, biostimulant application significantly affected both vegetative and generative parameters. The best vegetative characteristics were obtained in K1 (1,0 ml/l), K2 (1,5 ml/l), and K3 (2,0 ml/l) treatments, while the optimal generative characteristics were produced in K1 (1,0 ml/l), K2 (1,5 ml/l), K4 (2,5 ml/l), and K7 (4,0 ml/l) treatments.
References
Albbas, F. A. A., & Khudair, T. Y. (2023). Effect of Spraying with Yeast Extract and BasfoliarAktiv Liquid Fertilizer on the Vegetative and Flowering Growth of Malva sp. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 19(01 (Supp)), 1519–1527. https://doi.org/10.59467/IJASS.2023.19.1519
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531
Amiri Rodan, M., Hassandokht, M. R., Sadeghzadeh-Ahari, D., & Mousavi, A. (2020). Mitigation of drought stress in eggplant by date straw and plastic mulches. Journal of the Saudi Society of Agricultural Sciences, 19(7), 492–498. https://doi.org/10.1016/j.jssas.2020.09.006
Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020
Badan Pusat Statistik. (2021). Produksi Tanaman Sayuran, 2021. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-%20tanaman-sayuran.html
Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012
Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866. https://doi.org/10.3390/agronomy10060866
BPS. (2022). Produksi Tanaman Sayuran, 2022. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-tanaman-sayuran.html
BPS. (2023). Produksi Tanaman Sayuran, 2023. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-tanaman-sayuran.html
Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02202
Constantin, D.-C., Gheorghe, M. C., Buzatu, M. A., & Scurtu, I. (2023). The role of biostimulants in the fertilization program in eggplant. Romanian Journal of Horticulture, 4, 59–64. https://doi.org/10.51258/RJH.2023.06
David-Rogeat, N., Broadley, M. R., & Stavridou, E. (2024). Drought and heatwave affected the African eggplant differently when present in combination than individually. Environmental and Experimental Botany, 220, 105670. https://doi.org/10.1016/j.envexpbot.2024.105670
Di Mola, I., Cozzolino, E., Ottaiano, L., Giordano, M., Rouphael, Y., Colla, G., & Mori, M. (2019). Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy, 9(10), 571. https://doi.org/10.3390/agronomy9100571
Duri, L. G., Paradiso, R., Di Mola, I., Cozzolino, E., Ottaiano, L., Marra, R., & Mori, M. (2025). Organic Fertilization and Biostimulant Application to Improve Yield and Quality of Eggplant While Reducing the Environmental Impact. Plants, 14(6), 962. https://doi.org/10.3390/plants14060962
EL Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359
Gyogluu Wardjomto, C., Mohammed, M., Ngmenzuma, T. Y., & Mohale, K. C. (2023). Effect of rhizobia inoculation and seaweed extract (Ecklonia maxima) application on the growth, symbiotic performance and nutritional content of cowpea (Vigna unguiculata (L.) Walp.). Frontiers in Agronomy, 5. https://doi.org/10.3389/fagro.2023.1138263
Hussein, H. A., Jawad, D. H., & Abboud, A. K. (2019). International Journal of Botany Studies Effect of foliar nutrition by seaweed extract marmarine and basfoliar aktiv in growth and yield of pepper sweet (Along type) Sierra Nevada Variety Under in Plastic Houses Conditions (Vol. 4). www.botanyjournals.com
Immanen, J., Nieminen, K., Smolander, O.-P., Kojima, M., Alonso Serra, J., Koskinen, P., Zhang, J., Elo, A., Mähönen, A. P., Street, N., Bhalerao, R. P., Paulin, L., Auvinen, P., Sakakibara, H., & Helariutta, Y. (2016). Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 26(15), 1990–1997. https://doi.org/10.1016/j.cub.2016.05.053
Kocira, A., Świeca, M., Kocira, S., Złotek, U., & Jakubczyk, A. (2018). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences, 25(3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039
Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E., & Piskier, T. (2019). Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy, 9(2), 93. https://doi.org/10.3390/agronomy9020093
La Bella, S., Consentino, B. B., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., & Sabatino, L. (2021). Impact of Ecklonia maxima Seaweed Extract and Mo Foliar Treatments on Biofortification, Spinach Yield, Quality and NUE. Plants, 10(6), 1139. https://doi.org/10.3390/plants10061139
Lefi, E., Badri, M., Hamed, S. Ben, Talbi, S., Mnafgui, W., Ludidi, N., & Chaieb, M. (2023). Influence of Brown Seaweed (Ecklonia maxima) Extract on the Morpho-Physiological Parameters of Melon, Cucumber, and Tomato Plants. Agronomy, 13(11), 2745. https://doi.org/10.3390/agronomy13112745
Liu, R., Shu, B., Wang, Y., Yu, B., Wang, Y., Gan, Y., Liang, Y., Qiu, Z., Yang, J., Yan, S., & Cao, B. (2023). Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress. Environmental and Experimental Botany, 211, 105369. https://doi.org/10.1016/j.envexpbot.2023.105369
Mazurenko, B., Sani, M. N. H., Litvinov, D., Kalenska, S., Kovalenko, V., Shpakovych, I., Pikovska, O., Gordienko, L., Yong, J. W. H., Ghaley, B. B., & Tonkha, O. (2025). Biostimulants-induced improvements in pea-barley intercropping systems: A study of biomass and yield optimization under Ukrainian climatic conditions. Journal of Agriculture and Food Research, 22, 102074. https://doi.org/10.1016/j.jafr.2025.102074
Miceli, A., Vetrano, F., & Moncada, A. (2021). Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae, 7(11), 440. https://doi.org/10.3390/horticulturae7110440
Moncada, A., Vetrano, F., Esposito, A., & Miceli, A. (2022). Effects of NAA and Ecklonia maxima Extracts on Lettuce and Tomato Transplant Production. Agronomy, 12(2), 329. https://doi.org/10.3390/agronomy12020329
Mystkowska, I. (2022). The Effect of Biostimulants on the Chlorophyll Content and Height of <i>Solanum tuberosum</i> L. Plants. Journal of Ecological Engineering, 23(9), 72–77. https://doi.org/10.12911/22998993/151713
Nida, K., Siddiqui, Z. S., Salman, Z. A., Aftab, A., Abid, R., Abideen, Z., & Siddiqui, M. H. (2024). Scrutinize the integrated role of Azotobacter vinelandii in nitrogen assimilation, photosystem II functionality and aerenchyma formation of Zea mays under moisture stress environment. Plant Stress, 11, 100378. https://doi.org/10.1016/j.stress.2024.100378
Niu, Y., & Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00915
Parmar, P., Kumar, R., Neha, Y., & Srivatsan, V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1073546
Prisa, D., & Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae, 9(7), 829. https://doi.org/10.3390/horticulturae9070829
Rana, V. S., Sharma, V., Sharma, S., Rana, N., Kumar, V., Sharma, U., Almutairi, K. F., Avila-Quezada, G. D., Abd_Allah, E. F., & Gudeta, K. (2023). Seaweed Extract as a Biostimulant Agent to Enhance the Fruit Growth, Yield, and Quality of Kiwifruit. Horticulturae, 9(4), 432. https://doi.org/10.3390/horticulturae9040432
Roem, R. (2017). Growth Response and Yield of Hanjeli (Coix lacryma-jobi L.) to Planting Distance and Liquid Fertiliser. Agrikultura, Volume 28. DOI:10.24198/agrikultura.v28i2.14958
Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00040
Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., & De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29(1), 459–470. https://doi.org/10.1007/s10811-016-0937-x
Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M., Bonini, P., & Colla, G. (2018). Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy, 8(7), 126. https://doi.org/10.3390/agronomy8070126
Saleh, I. (2019). Dasar-Dasar Fisiologi Tumbuhan (1st ed.). CV. Aksarasatu .
Sharma, M., & Kaushik, P. (2021). Biochemical Composition of Eggplant Fruits: A Review. Applied Sciences, 11(15), 7078. https://doi.org/10.3390/app11157078
Svolacchia, N., & Sabatini, S. (2023). Cytokinins. Current Biology, 33(1), R10–R13. https://doi.org/10.1016/j.cub.2022.11.022
Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01484
Wadas, W., & Dziugieł, T. (2020). Changes in Assimilation Area and Chlorophyll Content of Very Early Potato (Solanum tuberosum L.) Cultivars as Influenced by Biostimulants. Agronomy, 10(3), 387. https://doi.org/10.3390/agronomy10030387
Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R., & Prithiviraj, B. (2013). Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324–339. https://doi.org/10.1007/s00344-012-9301-9
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049
Yao, Y., Wang, X., Chen, B., Zhang, M., & Ma, J. (2020). Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega, 5(8), 4242–4249. https://doi.org/10.1021/acsomega.9b04155
Yarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. In Iranian Journal of Basic Medical Sciences (Vol. 24, Issue 4, pp. 420–427). Mashhad University of Medical Sciences. https://doi.org/10.22038/IJBMS.2021.50276.11452
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Agricultural Science

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.









