The Effect of Seaweed Extract Biostimulant on Growth and Yield of Eggplant (Solanum melongena L.)

Authors

  • Athillah Ramadhani Faculty of Agriculture, Swadaya Gunung Jati University, Cirebon, Indonesia
  • Ad’Diva Ahmad Fadhil Aryodya Faculty of Agriculture, Swadaya Gunung Jati University, Cirebon, Indonesia
  • Putri Nabila Maharani Faculty of Agriculture, Swadaya Gunung Jati University, Cirebon, Indonesia
  • Dukat Faculty of Agriculture, Swadaya Gunung Jati University, Cirebon, Indonesia

DOI:

https://doi.org/10.55173/agriscience.v9i2.190

Abstract

Eggplant possesses high economic value with various nutritional contents such as minerals and vitamins that are benefical for human health. However, productivity decline due to environmental stress poses a challenge in global market demand fulfillment. The application of biostimulants represents one solution to enhance the growth and yield of eggplant (Solanum melongena L.). This research aimed to examine the effect and optimal concentration of biostimulant application on eggplant plants. The study was conducted in cultivation fields located in Nanggela Village, Kuningan Regency, West Java, from July to October 2025. This experiment used Randomized Block Design (RBD) with nine biostimulant concentration treatments and three replications, resulting in 27 experimental plots, each measuring 3,5 x 1,5 meters, consisting 14 plants and a 50 cm spacing between plots, 50 cm spacing between plants, and 60 cm spacing between rows. The vegetative phase observation parameters included root length, root volume, plant height, stem diameter, number of leaves, leaf area, leaf area index, plant dry weight, and relative growth rate, while the generative phase parameters included number of fruits, fruit diameter, fruit length, fruit weight, and yield weight per plant. The data obtained were analyzed using one-way analysis of variance (ANOVA), followed by the Scott-Knott cluster analyses to determind significant differences among treatments. The results showed that biostimulants had a significant effect on growth and development aspects. Specifically, biostimulant application significantly affected both vegetative and generative parameters. The best vegetative characteristics were obtained in K1 (1,0 ml/l), K2 (1,5 ml/l), and K3 (2,0 ml/l) treatments, while the optimal generative characteristics were produced in K1 (1,0 ml/l), K2 (1,5 ml/l), K4 (2,5 ml/l), and K7 (4,0 ml/l) treatments.

References

Albbas, F. A. A., & Khudair, T. Y. (2023). Effect of Spraying with Yeast Extract and BasfoliarAktiv Liquid Fertilizer on the Vegetative and Flowering Growth of Malva sp. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 19(01 (Supp)), 1519–1527. https://doi.org/10.59467/IJASS.2023.19.1519

Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531

Amiri Rodan, M., Hassandokht, M. R., Sadeghzadeh-Ahari, D., & Mousavi, A. (2020). Mitigation of drought stress in eggplant by date straw and plastic mulches. Journal of the Saudi Society of Agricultural Sciences, 19(7), 492–498. https://doi.org/10.1016/j.jssas.2020.09.006

Ammar, E. E., Aioub, A. A. A., Elesawy, A. E., Karkour, A. M., Mouhamed, M. S., Amer, A. A., & EL-Shershaby, N. A. (2022). Algae as Bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29(5), 3083–3096. https://doi.org/10.1016/j.sjbs.2022.03.020

Badan Pusat Statistik. (2021). Produksi Tanaman Sayuran, 2021. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-%20tanaman-sayuran.html

Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012

Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and Quantification of Plant Growth Regulators and Antioxidant Compounds in Aqueous Extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866. https://doi.org/10.3390/agronomy10060866

BPS. (2022). Produksi Tanaman Sayuran, 2022. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-tanaman-sayuran.html

BPS. (2023). Produksi Tanaman Sayuran, 2023. https://www.bps.go.id/id/statistics-table/2/NjEjMg==/produksi-tanaman-sayuran.html

Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02202

Constantin, D.-C., Gheorghe, M. C., Buzatu, M. A., & Scurtu, I. (2023). The role of biostimulants in the fertilization program in eggplant. Romanian Journal of Horticulture, 4, 59–64. https://doi.org/10.51258/RJH.2023.06

David-Rogeat, N., Broadley, M. R., & Stavridou, E. (2024). Drought and heatwave affected the African eggplant differently when present in combination than individually. Environmental and Experimental Botany, 220, 105670. https://doi.org/10.1016/j.envexpbot.2024.105670

Di Mola, I., Cozzolino, E., Ottaiano, L., Giordano, M., Rouphael, Y., Colla, G., & Mori, M. (2019). Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy, 9(10), 571. https://doi.org/10.3390/agronomy9100571

Duri, L. G., Paradiso, R., Di Mola, I., Cozzolino, E., Ottaiano, L., Marra, R., & Mori, M. (2025). Organic Fertilization and Biostimulant Application to Improve Yield and Quality of Eggplant While Reducing the Environmental Impact. Plants, 14(6), 962. https://doi.org/10.3390/plants14060962

EL Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359

Gyogluu Wardjomto, C., Mohammed, M., Ngmenzuma, T. Y., & Mohale, K. C. (2023). Effect of rhizobia inoculation and seaweed extract (Ecklonia maxima) application on the growth, symbiotic performance and nutritional content of cowpea (Vigna unguiculata (L.) Walp.). Frontiers in Agronomy, 5. https://doi.org/10.3389/fagro.2023.1138263

Hussein, H. A., Jawad, D. H., & Abboud, A. K. (2019). International Journal of Botany Studies Effect of foliar nutrition by seaweed extract marmarine and basfoliar aktiv in growth and yield of pepper sweet (Along type) Sierra Nevada Variety Under in Plastic Houses Conditions (Vol. 4). www.botanyjournals.com

Immanen, J., Nieminen, K., Smolander, O.-P., Kojima, M., Alonso Serra, J., Koskinen, P., Zhang, J., Elo, A., Mähönen, A. P., Street, N., Bhalerao, R. P., Paulin, L., Auvinen, P., Sakakibara, H., & Helariutta, Y. (2016). Cytokinin and Auxin Display Distinct but Interconnected Distribution and Signaling Profiles to Stimulate Cambial Activity. Current Biology, 26(15), 1990–1997. https://doi.org/10.1016/j.cub.2016.05.053

Kocira, A., Świeca, M., Kocira, S., Złotek, U., & Jakubczyk, A. (2018). Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi Journal of Biological Sciences, 25(3), 563–571. https://doi.org/10.1016/j.sjbs.2016.01.039

Kocira, S., Szparaga, A., Kuboń, M., Czerwińska, E., & Piskier, T. (2019). Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy, 9(2), 93. https://doi.org/10.3390/agronomy9020093

La Bella, S., Consentino, B. B., Rouphael, Y., Ntatsi, G., De Pasquale, C., Iapichino, G., & Sabatino, L. (2021). Impact of Ecklonia maxima Seaweed Extract and Mo Foliar Treatments on Biofortification, Spinach Yield, Quality and NUE. Plants, 10(6), 1139. https://doi.org/10.3390/plants10061139

Lefi, E., Badri, M., Hamed, S. Ben, Talbi, S., Mnafgui, W., Ludidi, N., & Chaieb, M. (2023). Influence of Brown Seaweed (Ecklonia maxima) Extract on the Morpho-Physiological Parameters of Melon, Cucumber, and Tomato Plants. Agronomy, 13(11), 2745. https://doi.org/10.3390/agronomy13112745

Liu, R., Shu, B., Wang, Y., Yu, B., Wang, Y., Gan, Y., Liang, Y., Qiu, Z., Yang, J., Yan, S., & Cao, B. (2023). Transcriptome analysis reveals key genes involved in the eggplant response to high-temperature stress. Environmental and Experimental Botany, 211, 105369. https://doi.org/10.1016/j.envexpbot.2023.105369

Mazurenko, B., Sani, M. N. H., Litvinov, D., Kalenska, S., Kovalenko, V., Shpakovych, I., Pikovska, O., Gordienko, L., Yong, J. W. H., Ghaley, B. B., & Tonkha, O. (2025). Biostimulants-induced improvements in pea-barley intercropping systems: A study of biomass and yield optimization under Ukrainian climatic conditions. Journal of Agriculture and Food Research, 22, 102074. https://doi.org/10.1016/j.jafr.2025.102074

Miceli, A., Vetrano, F., & Moncada, A. (2021). Influence of Ecklonia maxima Extracts on Growth, Yield, and Postharvest Quality of Hydroponic Leaf Lettuce. Horticulturae, 7(11), 440. https://doi.org/10.3390/horticulturae7110440

Moncada, A., Vetrano, F., Esposito, A., & Miceli, A. (2022). Effects of NAA and Ecklonia maxima Extracts on Lettuce and Tomato Transplant Production. Agronomy, 12(2), 329. https://doi.org/10.3390/agronomy12020329

Mystkowska, I. (2022). The Effect of Biostimulants on the Chlorophyll Content and Height of <i>Solanum tuberosum</i> L. Plants. Journal of Ecological Engineering, 23(9), 72–77. https://doi.org/10.12911/22998993/151713

Nida, K., Siddiqui, Z. S., Salman, Z. A., Aftab, A., Abid, R., Abideen, Z., & Siddiqui, M. H. (2024). Scrutinize the integrated role of Azotobacter vinelandii in nitrogen assimilation, photosystem II functionality and aerenchyma formation of Zea mays under moisture stress environment. Plant Stress, 11, 100378. https://doi.org/10.1016/j.stress.2024.100378

Niu, Y., & Xiang, Y. (2018). An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00915

Parmar, P., Kumar, R., Neha, Y., & Srivatsan, V. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1073546

Prisa, D., & Spagnuolo, D. (2023). Plant Production with Microalgal Biostimulants. Horticulturae, 9(7), 829. https://doi.org/10.3390/horticulturae9070829

Rana, V. S., Sharma, V., Sharma, S., Rana, N., Kumar, V., Sharma, U., Almutairi, K. F., Avila-Quezada, G. D., Abd_Allah, E. F., & Gudeta, K. (2023). Seaweed Extract as a Biostimulant Agent to Enhance the Fruit Growth, Yield, and Quality of Kiwifruit. Horticulturae, 9(4), 432. https://doi.org/10.3390/horticulturae9040432

Roem, R. (2017). Growth Response and Yield of Hanjeli (Coix lacryma-jobi L.) to Planting Distance and Liquid Fertiliser. Agrikultura, Volume 28. DOI:10.24198/agrikultura.v28i2.14958

Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00040

Rouphael, Y., De Micco, V., Arena, C., Raimondi, G., Colla, G., & De Pascale, S. (2017). Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. Journal of Applied Phycology, 29(1), 459–470. https://doi.org/10.1007/s10811-016-0937-x

Rouphael, Y., Giordano, M., Cardarelli, M., Cozzolino, E., Mori, M., Kyriacou, M., Bonini, P., & Colla, G. (2018). Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy, 8(7), 126. https://doi.org/10.3390/agronomy8070126

Saleh, I. (2019). Dasar-Dasar Fisiologi Tumbuhan (1st ed.). CV. Aksarasatu .

Sharma, M., & Kaushik, P. (2021). Biochemical Composition of Eggplant Fruits: A Review. Applied Sciences, 11(15), 7078. https://doi.org/10.3390/app11157078

Svolacchia, N., & Sabatini, S. (2023). Cytokinins. Current Biology, 33(1), R10–R13. https://doi.org/10.1016/j.cub.2022.11.022

Taher, D., Solberg, S. Ø., Prohens, J., Chou, Y., Rakha, M., & Wu, T. (2017). World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01484

Wadas, W., & Dziugieł, T. (2020). Changes in Assimilation Area and Chlorophyll Content of Very Early Potato (Solanum tuberosum L.) Cultivars as Influenced by Biostimulants. Agronomy, 10(3), 387. https://doi.org/10.3390/agronomy10030387

Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R., & Prithiviraj, B. (2013). Regulation of Phytohormone Biosynthesis and Accumulation in Arabidopsis Following Treatment with Commercial Extract from the Marine Macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324–339. https://doi.org/10.1007/s00344-012-9301-9

Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.02049

Yao, Y., Wang, X., Chen, B., Zhang, M., & Ma, J. (2020). Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega, 5(8), 4242–4249. https://doi.org/10.1021/acsomega.9b04155

Yarmohammadi, F., Rahbardar, M. G., & Hosseinzadeh, H. (2021). Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. In Iranian Journal of Basic Medical Sciences (Vol. 24, Issue 4, pp. 420–427). Mashhad University of Medical Sciences. https://doi.org/10.22038/IJBMS.2021.50276.11452

Downloads

Published

2025-11-29

How to Cite

The Effect of Seaweed Extract Biostimulant on Growth and Yield of Eggplant (Solanum melongena L.). (2025). Agricultural Science, 9(2), 237-258. https://doi.org/10.55173/agriscience.v9i2.190