Biofortification in Palm Oil Based on Saponin Nanotechnology: Innovation in Nutritional Stability, Antioxidants and for Functional Quality
DOI:
https://doi.org/10.55173/agriscience.v8i1.152Abstract
Palm oil is the world's main vegetable oil commodity and significantly contributes to the food industry. However, challenges related to the low content of certain nutrients and susceptibility to lipid oxidation are major issues that affect product quality. Fortification technology is an innovative solution to improve palm oil's nutritional value and oxidative stability. This article aims to evaluate the development of modern technology in palm oil fortification, including the addition of vitamin A, vitamin E, bioactive compounds, and the use of natural and synthetic antioxidants. Various methods, such as microencapsulation, nanotechnology, and biofortification techniques, are discussed in the context of their effectiveness in maintaining nutritional stability, preventing lipid oxidation, and extending product shelf life. This review highlights the challenges of implementing fortification technology, including technical and regulatory aspects in the food industry. The results of the review indicate that fortification technology improves nutritional quality and the oxidative stability of palm oil, thus supporting the development of healthier and more value-added food products. The implementation of vitamin A and E fortification with nanotechnology is expected to be able to answer global nutritional challenges and increase the competitiveness of the palm oil industry in the international market.
References
Ahmad, R., Hussain, A., & Ahsan, H. (2019). Peroxynitrite: cellular pathology and implications in autoimmunity. Journal of Immunoassay and Immunochemistry, 40(2), 123–138. https://doi.org/10.1080/15321819.2019.1583109
Alemán, M., Bou, R., Tres, A., Polo, J., Codony, R., & Guardiola, F. (2014). The effect of citric acid and ascorbyl palmitate in palm oil enriched with heme iron: A model for iron fortification in bakery products. European Journal of Lipid Science and Technology, 116(3), 300–310. https://doi.org/10.1002/ejlt.201300007
Aleman, M., Nuchi, C. D., Bou, R., Tres, A., Polo, J., Guardiola, F., & Codony, R. (2010). Effectiveness of antioxidants in preventing oxidation of palm oil enriched with heme iron: A model for iron fortification in baked products. European Journal of Lipid Science and Technology, 112(7), 761–769. https://doi.org/10.1002/ejlt.200900220
Amber-Vitos, O., Chaturvedi, N., Nachliel, E., Gutman, M., & Tsfadia, Y. (2016). The effect of regulating molecules on the structure of the PPAR-RXR complex. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1861(11), 1852–1863. https://doi.org/10.1016/j.bbalip.2016.09.003
Amenta, V., Aschberger, K., Arena, M., Bouwmeester, H., Botelho Moniz, F., Brandhoff, P., Gottardo, S., Marvin, H. J. P., Mech, A., Quiros Pesudo, L., Rauscher, H., Schoonjans, R., Vettori, M. V., Weigel, S., & Peters, R. J. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology, 73(1), 463–476. https://doi.org/10.1016/j.yrtph.2015.06.016
Andarwulan, N., Gitapratiwi, D., Laillou, A., Fitriani, D., Hariyadi, P., Moench-Pfanner, R., & Martianto, D. (2014). Quality of vegetable oil prior to fortification is an important criteria to achieve a health impact. Nutrients, 6(11), 5051–5060. https://doi.org/10.3390/nu6115051
Anggraeni Putri, P., Chatri, M., & Advinda, L. (2023). Karakteristik Saponin Senyawa Metabolit Sekunder pada Tumbuhan. Jurnal Serambi Biologi, 8(2)(2), 251–258.
Arathi, B. P., Sowmya, P. R. R., Vijay, K., Baskaran, V., & Lakshminarayana, R. (2015). Metabolomics of carotenoids: The challenges and prospects - A review. Trends in Food Science and Technology, 45(1), 105–117. https://doi.org/10.1016/j.tifs.2015.06.003
Azlan, A., Prasad, K. N., Khoo, H. E., Abdul-Aziz, N., Mohamad, A., Ismail, A., & Amom, Z. (2010). Comparison of fatty acids, vitamin E and physicochemical properties of Canarium odontophyllum Miq. (dabai), olive and palm oils. Journal of Food Composition and Analysis, 23(8), 772–776. https://doi.org/10.1016/j.jfca.2010.03.026
Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16–40. https://doi.org/10.1016/j.foodres.2014.01.057
Diao, Q. X., Zhang, J. Z., Zhao, T., Xue, F., Gao, F., Ma, S. M., & Wang, Y. (2016). Vitamin E promotes breast cancer cell proliferation by reducing ROS production and p53 expression. European Review for Medical and Pharmacological Sciences, 20(12), 2710–2717.
Fekadu Gemede, H. (2014). Antinutritional Factors in Plant Foods: Potential Health Benefits and Adverse Effects. International Journal of Nutrition and Food Sciences, 3(4), 284. https://doi.org/10.11648/j.ijnfs.20140304.18
Hariyadi, P. (2021). Understanding the Codex Standard to Ensure Safety and Quality of Palm Oil. International Journal of Oil Palm, 4(1), 1–7. https://doi.org/10.35876/ijop.v4i1.58
Jafari, S. M., & McClements, D. J. (2017). Nanotechnology Approaches for Increasing Nutrient Bioavailability. In Advances in Food and Nutrition Research (1st ed., Vol. 81). Elsevier Inc. https://doi.org/10.1016/bs.afnr.2016.12.008
Jiang, X., Cao, Y., Jørgensen, L. von G., Strobel, B. W., Hansen, H. C. B., & Cedergreen, N. (2018). Where does the toxicity come from in saponin extract? Chemosphere, 204, 243–250. https://doi.org/10.1016/j.chemosphere.2018.04.044
Juang, Y. P., & Liang, P. H. (2020). Biological and Pharmacological Effects of Synthetic Saponins. Molecules (Basel, Switzerland), 25(21). https://doi.org/10.3390/molecules25214974
Kregiel, D., Berlowska, J., Witonska, I., Antolak, H., Proestos, C., Babic, M., Babic, L., & Zhang, B. (2017). Saponin-Based, Biological-Active Surfactants from Plants. Application and Characterization of Surfactants. https://doi.org/10.5772/68062
Liu, Y., Li, Z., Xu, H., & Han, Y. (2016). Extraction of Saponin from Camellia oleifera Abel Cake by a Combination Method of Alkali Solution and Acid Isolation. Journal of Chemistry, 2016. https://doi.org/10.1155/2016/6903524
Loganathan, R., Tarmizi, A. H. A., Vethakkan, S. R., & Teng, K. T. (2022). a Review on Lipid Oxidation in Edible Oils. Malaysian Journal of Analytical Sciences, 26(6), 1378–1393.
Majnooni, M. B., Fakhri, S., Ghanadian, S. M., Bahrami, G., Mansouri, K., Iranpanah, A., Farzaei, M. H., & Mojarrab, M. (2023). Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites, 13(3). https://doi.org/10.3390/metabo13030323
Malau, K., Andarwulan, N., Martianto, D., Gitapratiwi, D., Wulan, A., Fitriani, D., & Hariyadi, P. (2019). Kinetics of Vitamin A Degradation and Oxidation of Palm Oil Fortified with Retinyl Palmitate and β-Carotene from Red Palm Oil. International Journal of Oil Palm, 2(3), 108–119. https://doi.org/10.35876/ijop.v2i3.44
Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules, 20(9), 17339–17361. https://doi.org/10.3390/molecules200917339
Martianto, D., Andarwulan, N., Siahaan, D., Gitapratiwi, D., Triana, R. N., & Hariyadi, P. (2018). Critical Chemical-Quality Assessment for the Oxidative Stability of Bulk Palm Oil in Indonesia. Ijop.Id, 1(3), 129–136. http://www.ijop.id/index.php/ijop/article/view/18
Maternal–fetal transfer and metabolism of vitamin A and its precursor β-carotene.pdf. (2012). elsivier-Biochimica et Biophysica Acta 1821 (2012) 88–98. https://doi.org/https://doi.org/10.1016/j.bbalip.2011.05.003
Mba, O. I., Dumont, M. J., & Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Bioscience, 10, 26–41. https://doi.org/10.1016/j.fbio.2015.01.003
McClements, D. J. (2018). Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food and Function, 9(1), 22–41. https://doi.org/10.1039/c7fo01515a
Meshram, P. D., Shingade, S., & Madankar, C. S. (2021). Comparative study of saponin for surfactant properties and potential application in personal care products. Materials Today: Proceedings, 45, 5010–5013. https://doi.org/10.1016/j.matpr.2021.01.448
Miyazawa, T., Burdeos, G. C., Itaya, M., Nakagawa, K., & Miyazawa, T. (2019). Vitamin E: Regulatory Redox Interactions. IUBMB Life, 71(4), 430–441. https://doi.org/10.1002/iub.2008
Moghimipour, E., & Handali, S. (2015). Saponin: Properties, Methods of Evaluation and Applications. Annual Research & Review in Biology, 5(3), 207–220. https://doi.org/10.9734/arrb/2015/11674
Nagendran, B., Unnithan, U. R., Choo, Y. M., & Sundram, K. (2000). Characteristics of red palm oil, a carotene- and vitamin E-rich refined oil for food uses. Food and Nutrition Bulletin, 21(2), 189–194. https://doi.org/10.1177/156482650002100213
Niki, E. (2014). Role of vitamin e as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radical Biology and Medicine, 66, 3–12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
Pignitter, M., Hernler, N., Zaunschirm, M., Kienesberger, J., Somoza, M. M., Kraemer, K., & Somoza, V. (2016). Evaluation of palm oil as a suitable vegetable oil for vitamin a fortification programs. Nutrients, 8(6), 1–13. https://doi.org/10.3390/nu8060378
Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), 1–14. https://doi.org/10.1186/s43014-020-0020-5
Sen, C. K., Rink, C., & Khanna, S. (2010). Palm oil–derived natural vitamin e α-tocotrienol in brain health and disease. Journal of the American College of Nutrition, 29(December 2014), 314S-323S. https://doi.org/10.1080/07315724.2010.10719846
Shahidi, F., & De Camargo, A. C. (2016). Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. International Journal of Molecular Sciences, 17(10), 1–29. https://doi.org/10.3390/ijms17101745
Sharma, P., Tyagi, A., Bhansali, P., Pareek, S., Singh, V., Ilyas, A., Mishra, R., & Poddar, N. K. (2021). Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food and Chemical Toxicology, 150(January), 112075. https://doi.org/10.1016/j.fct.2021.112075
Silalahi, D. K. N., Yuliyanti, D., da Silva, M., Christianti, I., Mulyono, K., & Wassell, P. (2017). The stability of vitamin A in fortified palm olein during extended storage and thermal treatment. International Journal of Food Science and Technology, 52(8), 1869–1877. https://doi.org/10.1111/ijfs.13462
Soltani, M., Parivar, K., Baharara, J., Kerachian, M. A., & Asili, J. (2015). Putative mechanism for apoptosis-inducing properties of crude saponin isolated from sea cucumber (Holothuria leucospilota) as an antioxidant compound. Iranian Journal of Basic Medical Sciences, 18(2), 180–187.
Sulaiman, N., Beng, Y. C., Bustamam, F. K. A., & Hishamuddin, E. (2022). Assessment on the Current Quality and Identity Characteristics of Malaysian Palm Superolein. Malaysian Journal of Analytical Sciences, 26(5), 1011–1022.
Szewczyk, K., Chojnacka, A., & Górnicka, M. (2021). Tocopherols and tocotrienols—bioactive dietary compounds; what is certain, what is doubt? International Journal of Molecular Sciences, 22(12). https://doi.org/10.3390/ijms22126222
Tahir, M. B., Sohaib, M., Sagir, M., & Rafique, M. (2021). Role of Nanotechnology in Photocatalysis. In Encyclopedia of Smart Materials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815732-9.00006-1
Tan, B. A., Nair, A., Zakaria, M. I. S., Low, J. Y. S., Kua, S. F., Koo, K. L., Wong, Y. C., Neoh, B. K., Lim, C. M., & Appleton, D. R. (2023). Free Fatty Acid Formation Points in Palm Oil Processing and the Impact on Oil Quality. Agriculture (Switzerland), 13(5). https://doi.org/10.3390/agriculture13050957
Tan, C. H., Ariffin, A. A., Ghazali, H. M., Tan, C. P., Kuntom, A., & Choo, A. C. Y. (2017). Changes in oxidation indices and minor components of low free fatty acid and freshly extracted crude palm oils under two different storage conditions. Journal of Food Science and Technology, 54(7), 1757–1764. https://doi.org/10.1007/s13197-017-2569-9
Tan, Y., & McClements, D. J. (2021). Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chemistry, 348(January), 129148. https://doi.org/10.1016/j.foodchem.2021.129148
Thakur, A., Sharma, V., Thakur, A., & Vishal Sharma, C. (2019). An overview of anti-nutritional factors in food. International Journal of Chemical Studies, 7(1), 2472–2479.
Yeh, E. B., Barbano, D. M., & Drake, M. A. (2017). Vitamin Fortification of Fluid Milk. Journal of Food Science, 82(4), 856–864. https://doi.org/10.1111/1750-3841.13648
Zhu, C., Sanahuja, G., Yuan, D., Farré, G., Arjó, G., Berman, J., Zorrilla-López, U., Banakar, R., Bai, C., Pérez-Massot, E., Bassie, L., Capell, T., & Christou, P. (2013). Biofortification of plants with altered antioxidant content and composition: Genetic engineering strategies. Plant Biotechnology Journal, 11(2), 129–141. https://doi.org/10.1111/j.1467-7652.2012.00740.x
Zhu, Z., Wen, Y., Yi, J., Cao, Y., Liu, F., & McClements, D. J. (2019). Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. Journal of Colloid and Interface Science, 536, 80–87. https://doi.org/10.1016/j.jcis.2018.10.024
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sapto Priyadi, H. Haryuni

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.